Saturday, 8 October 2016

Mobile Computing(MCA)


MOBILE COMPUTING
Mobile Computing : A technology that allows transmission of data, via a computer, without having to be connected to a fixed physical link.
Mobile voice communication is widely established throughout the world and has had a very rapid increase in the number of subscribers to the various cellular networks over the last few years. An extension of this technology is the ability to send and receive data across these cellular networks. This is the principle of mobile computing.
Mobile data communication has become a very important and rapidly evolving technology as it allows users to transmit data from remote locations to other remote or fixed locations. This proves to be the solution to the biggest problem of business people on the move - mobility.
In this article we give an overview of existing cellular networks and describe in detail the CDPD technology which allows data communications across these networks. Finally, we look at the applications of Mobile Computing in the real world.
The question that always arises when a business is thinking of buying a mobile computer is "Will it be worth it?"
In many fields of work, the ability to keep on the move is vital in order to utilise time efficiently. Efficient utilisation of resources (ie: staff) can mean substantial savings in transportation costs and other non quantifyable costs such as increased customer attention, impact of on site maintenance and improved intercommunication within the business.
The importance of Mobile Computers has been highlighted in many fields of which a few are described below:
  • For Estate Agents
Estate agents can work either at home or out in the field. With mobile computers they can be more productive. They can obtain current real estate information by accessing multiple listing services, which they can do from home, office or car when out with clients. They can provide clients with immediate feedback regarding specific homes or neighborhoods, and with faster loan approvals, since applications can be submitted on the spot. Therefore, mobile computers allow them to devote more time to clients.
  • Emergency Services
Ability to recieve information on the move is vital where the emergency services are involved. Information regarding the address, type and other details of an incident can be dispatched quickly, via a CDPD system using mobile computers, to one or several appropriate mobile units which are in the vicinity of the incident.
Here the reliability and security implemented in the CDPD system would be of great advantage.


  • In courts
Defense counsels can take mobile computers in court. When the opposing counsel references a case which they are not familiar, they can use the computer to get direct, real-time access to on-line legal database services, where they can gather information on the case and related precedents. Therefore mobile computers allow immediate access to a wealth of information, making people better informed and prepared.
  • In companies
Managers can use mobile computers in, say, critical presentations to major customers. They can access the latest market share information. At a small recess, they can revise the presentation to take advantage of this information. They can communicate with the office about possible new offers and call meetings for discussing responds to the new proposals. Therefore, mobile computers can leverage competitive advantages.
  • Stock Information Collation/Control
In environments where access to stock is very limited ie: factory warehouses. The use of small portable electronic databases accessed via a mobile computer would be ideal.
Data collated could be directly written to a central database, via a CDPD network, which holds all stock information hence the need for transfer of data to the central computer at a later date is not necessary. This ensures that from the time that a stock count is completed, there is no inconsistency between the data input on the portable computers and the central database.
  • Credit Card Verification
At Point of Sale (POS) terminals in shops and supermarkets, when customers use credit cards for transactions, the intercommunication required between the bank central computer and the POS terminal, in order to effect verification of the card usage, can take place quickly and securely over cellular channels using a mobile computer unit. This can speed up the transaction process and relieve congestion at the POS terminals.
  • Taxi/Truck Dispatch
Using the idea of a centrally controlled dispatcher with several mobile units (taxis), mobile computing allows the taxis to be given full details of the dispatched job as well as allowing the taxis to communicate information about their whereabouts back to the central dispatch office. This system is also extremely useful in secure deliveries ie: Securicor. This allows a central computer to be able to track and recieve status information from all of its mobile secure delivery vans. Again, the security and reliabilty properties of the CDPD system shine through.

Taxi Dispatch Network

  • Electronic Mail/Paging
Usage of a mobile unit to send and read emails is a very useful asset for any business individual, as it allows him/her to keep in touch with any colleagues as well as any urgent developments that may affect their work. Access to the Internet, using mobile computing technology, allows the individual to have vast arrays of knowledge at his/her fingertips.
Paging is also achievable here, giving even more intercommunication capability between individuals, using a single mobile computer device.
Mobile telephony took off with the introduction of cellular technology which allowed the efficient utilisation of frequencies enabling the connection of a large number of users. During the 1980's analogue technology was used. Among the most well known systems were the NMT900 and 450 (Nordic Mobile Telephone) and the AMPS (Advanced Mobile Phone Service). In the 1990's the digital cellular technology was introduced with GSM (Global System Mobile) being the most widely accepted system around the world. Other such systems are the DCS1800 (Digital Communication System) and the PCS1900 (Personal Communication System).
A cellular network consists of mobile units linked together to switching equipment, which interconnect the different parts of the network and allow access to the fixed Public Switched Telephone Network (PSTN). The technology is hidden from view; it's incorporated in a number of tranceivers called Base Stations (BS). Every BS is located at a strategically selected place and covers a given area or cell - hence the name cellular communications. A number of adjacent cells grouped together form an area and the corresponding BSs communicate through a so called Mobile Switching Centre (MSC). The MSC is the heart of a cellular radio system. It is responsible for routing, or switching, calls from the originator to the destinator. It can be thought of managing the cell, being responsible for set-up, routing control and termination of the call, for management of inter-MSC hand over and supplementary services, and for collecting charging and accounting information. The MSC may be connected to other MSCs on the same network or to the PSTN.

Mobile Switching Centre

The frequencies used vary according to the cellular network technology implemented. For GSM, 890 - 915 MHz range is used for transmission and 935 -960 MHz for reception. The DCS techology uses frequencies in the 1800MHz range while PCS in the 1900MHz range.
Each cell has a number of channels associated with it. These are assigned to subscribers on demand. When a Mobile Station (MS) becomes 'active' it registers with the nearest BS. The corresponding MSC stores the information about that MS and its position. This information is used to direct incoming calls to the MS.
If during a call the MS moves to an adjacent cell then a change of frequency will necessarily occur - since adjacent cells never use the same channels. This procedure is called hand over and is the key to Mobile communications. As the MS is approaching the edge of a cell, the BS monitors the decrease in signal power. The strength of the signal is compared with adjacent cells and the call is handed over to the cell with the strongest signal.
During the switch, the line is lost for about 400ms. When the MS is going from one area to another it registers itself to the new MSC. Its location information is updated, thus allowing MSs to be used outside their 'home' areas.
channel structure
Since radio spectrum is a limited resource shared by all users, a method must be devised to divide up the bandwidth among as many users as possible. The method chosen by GSM is a combination of Time- and Frequency-Division Multiple Access (TDMA/FDMA). The FDMA part involves the division by frequency of the (maximum) 25 MHz bandwidth into 124 carrier frequencies spaced 200 kHz apart. One or more carrier frequencies are assigned to each base station. Each of these carrier frequencies is then divided in time, using a TDMA scheme. The fundamental unit of time in this TDMA scheme is called a burst period and it lasts 15/26 ms (or approx. 0.577 ms). Eight burst periods are grouped into a TDMA frame (120/26 ms, or approx. 4.615 ms), which forms the basic unit for the definition of logical channels. One physical channel is one burst period per TDMA frame.
Channels are defined by the number and position of their corresponding burst periods. All these definitions are cyclic, and the entire pattern repeats approximately every 3 hours. Channels can be divided into dedicated channels, which are allocated to a mobile station, and common channels, which are used by mobile stations in idle mode.
Traffic channels
A traffic channel (TCH) is used to carry speech and data traffic. Traffic channels are defined using a 26-frame multiframe, or group of 26 TDMA frames. The length of a 26-frame multiframe is 120 ms, which is how the length of a burst period is defined (120 ms divided by 26 frames divided by 8 burst periods per frame). Out of the 26 frames, 24 are used for traffic, 1 is used for the Slow Associated Control Channel (SACCH) and 1 is currently unused (see Figure 2). TCHs for the uplink and downlink are separated in time by 3 burst periods, so that the mobile station does not have to transmit and receive simultaneously, thus simplifying the electronics.
In addition to these full-rate TCHs, there are also half-rate TCHs defined, although they are not yet implemented. Half-rate TCHs will effectively double the capacity of a system once half-rate speech coders are specified (i.e., speech coding at around 7 kbps, instead of 13 kbps). Eighth-rate TCHs are also specified, and are used for signalling. In the recommendations, they are called Stand-alone Dedicated Control Channels (SDCCH).
Figure 2. Organization of bursts, TDMA frames, and multiframes for speech and data
Control channels
Common channels can be accessed both by idle mode and dedicated mode mobiles. The common channels are used by idle mode mobiles to exchange the signalling information required to change to dedicated mode. Mobiles already in dedicated mode monitor the surrounding base stations for handover and other information. The common channels are defined within a 51-frame multiframe, so that dedicated mobiles using the 26-frame multiframe TCH structure can still monitor control channels. The common channels include:
Broadcast Control Channel (BCCH)
Continually broadcasts, on the downlink, information including base station identity, frequency allocations, and frequency-hopping sequences.
Frequency Correction Channel (FCCH) and Synchronisation Channel (SCH)
Used to synchronise the mobile to the time slot structure of a cell by defining the boundaries of burst periods, and the time slot numbering. Every cell in a GSM network broadcasts exactly one FCCH and one SCH, which are by definition on time slot number 0 (within a TDMA frame).
Random Access Channel (RACH)
Slotted Aloha channel used by the mobile to request access to the network.
Paging Channel (PCH)
Used to alert the mobile station of an incoming call.
Access Grant Channel (AGCH)
Used to allocate an SDCCH to a mobile for signalling (in order to obtain a dedicated channel), following a request on the RACH.
Burst structure
There are four different types of bursts used for transmission in GSM [16]. The normal burst is used to carry data and most signalling. It has a total length of 156.25 bits, made up of two 57 bit information bits, a 26 bit training sequence used for equalization, 1 stealing bit for each information block (used for FACCH), 3 tail bits at each end, and an 8.25 bit guard sequence, as shown in Figure 2. The 156.25 bits are transmitted in 0.577 ms, giving a gross bit rate of 270.833 kbps.
The F burst, used on the FCCH, and the S burst, used on the SCH, have the same length as a normal burst, but a different internal structure, which differentiates them from normal bursts (thus allowing synchronization). The access burst is shorter than the normal burst, and is used only on the RACH.



No comments:
Write comments